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ABSTRACT: A way of taking the effects of unsteady motion into con- 
sideration in boundary layer theory has been found recently [1]. In 
the meantime, in hydraulics ever-increasing interest is being shown 
in the application of the ideas and methods of boundary layer theory 
to the study channel flows. We have attempted here to apply this 
hydrodynamic approach in deriving the law of resistance for turbulent 
unsteady flows in open channels. 

w DERIVATION OF THE SYSTEM OF EQUATIONS 

We shall consider plane nonstatioaary flows of a viscous in- 
compressible fluid described by the Navier- Stokes system of equations. 
We carry out the well-known transformation 

t =  (U / X)to, x =  Xr g= YYo, 

u =  Uuo, v = Vvo, p ~ pU~p0. 

Then this system of equations takes the dimensionless form 

Oto 

YxX 
u ~ 

Ouo . X V  Ouo 

Opo ~X  [ Y~ ~O~uo O~uo 
Oz~ + ~ \ -2  r ~ + Oyo ~ j '  

F ~jX 

UV 

OVo OvQ XV Ovo 
oto + uo ~ + -Ug" vo ~ 

g x  Opo v x  [v~  O~vo O~vo'~ 
V Y  Oyo + ~ \ X 2 0xo ~ + Oyo ~ ]' 

Ouv X V  Or~ 
Oxo § Y U  Oyo = 0 .  (1.1) 

Here we have taken the notation usually employed in hydrody- 
namics: t is time; (x, y) the Cartesian coordinate system, the x axis is 

directed along a fixed rectilinear contour; u, v ate the respective 
velocity components along the x and y axes; p is the pressure; 

p and u are the density and the kinematic viscosity coefficient of 
the fluid, respectively; Fx, Fy are the components of the body 
force; and X, Y, U, V are the scales of lengths and velocity com- 
ponents. 

We impose a first constraint on the flow. The Reynolds number 
R = UX/u  is large, or more precisely, we can neglect quantities 
of an order of smallness O(1/R) and higher. 

There are four arbitrary quantities U, V, X, and Y. In order re 
obtain a system of equations depending on a single parameter from 
(1.1), we subject these quantities to two variations of three con- 
ditions: 

U X  XV 
R ~ v ' y f f  = 1, v X ~ -  Y2U, (1.2) 

U X  X V  
R = - ~ -  , y g  ~ t,  X = Y. (1.3) 

As is known, conditions (1.2) lead the system of equations to 
a system of equations depending on the Reynolds number R in the 
vicinity of the boundary layer, and the conditions (1.8) in the 
region of the external flow. 

In system (1.1), we shall neglect the quantities which are of the 
order of smallness O(1]R) or more, both under conditions (1.2) and 

(1.3). 

Further, we impose a second constraintg >> dv/dt, where g 
is the acceleration of gravity. This constraint yields an approxi- 
mation of shallow-water theory. Shallow-water theory follows from 
the assumption that the component of the acceleration of a particle 
along the y-axis has an insignificant influence on the pressuxe [21 . 
Then, in the case of a heavy fluid and an inclined rectilinear bottom, 
according to system (1.1), we can write the system of equations in 
dimensional form: 

du t Op . OZu 
d-U- = g s i n ~ o - - y  ~ -  + v -Nr ,  

t Op 0 Ou Ov 
g cos ~0 + ~ -N- = ' -~- + ~ - o. (1.4) 

Here c% is the acute angle between the y axis and the direction 

of the force of gravity. 

Let the free surface be given by the expression y = h(x, t). From 
the second equation of system (1.4) and the condition of constancy 
of the pressure on the free surface, we obtain 

i Op Oh 
9 0z ~ g  cos ao ~ - - .  

Than, (1.4) takes the form 

Ou Ou Ou ( Oh) b~u 
O"~i-.-ku ~ z - k v - ~ - = g  sin %-- cos ao -~- x -~v by'-' 

Ou O v - - 0  
o-T + oy - -  " 

Thus, the system of equations for the flow as a whole, under 
these constraints, has the form of a system of equations of boundary 
layer theory. 

w TURBULENT FLOW 

The equations of a turbulent boundary layer are known [1, 31 . It 
is not difficult to write them for a heavy fluid and an inclined 
bottom. 

It was established in w that there is a definite relationship 
between the forms of the systems of equations of the boundary layer 
and the flow as a whole, namely: the system of equations describing 
the motion of a fluid over the region as a whole has the form of a 
system of equations of the boundary layer. We shall assume that 
this property of invariance of the forms of the system of equations 
of laminar boundary layer theory is also satisfied in the case of a 
turbulent flow. Then, for a turbulent open flow, we have the 
equations 

Ou Ou Ou ( Oh ) 'i O~ 
- ~ "  § u -~-x-x § V-~y---=g s i n a o - - c o s a o - ~ -  "~ o Oy 

Ou Ov 
o-7 + -~- = 0 .  (2.1) 

Here r is the friction stress. 
The boundary conditions on the free surface are 

Oh / Ot -4- u~ / Ox = v ~ (kinematic), T = 0 (dynamic). (2.2) 

Here u ~ = u (t, z, h), v ~ = v (t, z, h). 
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The boundary condit ions on the fixed boundary (on the bot tom) 
ate  

u = 0, v = 0 when/1 = 0. (2. 3) 

w LAW OF RESISTANCE FOR UNSTEADY MOTION OF AN OPEN 
FLOW 

We shal l  represent  the ra t io  of the fr ict ion stress to the fr ic t ion 
stress on the f ixed boundary (on the bottom) in the form of a po lynomia l :  

To 
~ 0  

Here the coeff ic ients  b i are de te rmined  from (2 .1 ) - (2 .3 ) .  We 
shal l  l i m i t  ourselves to the first three terms of the po lynomia l .  We 

de t e rmine  the coef f ic ien ts  b0, bl,  and bz from the fol lowing con- 
di t ions.  

On the bot tom 

~;~ = t ,  -~ --~ ~ g co8 no- -- sin a~ when ~ = 0. 

This y ie lds  

O T 
Pg T o  e o s = o ~ - -  =o = A .  0q To 

On the free surface 

x / % =  O when q =  L 

Then we have  

x / % = t q- AI 1 -- (t + A)rl' (O ~< rl ~< t ) .  (3.1) 

On the other hand, the f r ic t ion stress for a turbulent  flow can be 
wri t ten in  the form 

x / p = 8 0 u / 0 g .  

Thus, we obtain the d i f fe ren t ia l  equat ion  for the ve loc i ty  

peOu / On = xg, [t + -4,1 - -  (t + a ) ~ ' ] .  (3.2) 

For sma l l  values  of y the Al ' tshul-  Hinze formula  [4, 5] is  val id ,  
i . e . ,  

s = =u.//, = . =  u / p �9 (3.3) 

Here a is the universal  constant,  u* is the  dynamic  ve loc i ty .  
We take  e = au*](y) for any y.  We shal l  seek  the funct ion j(y),  

fo l lowing the Satkevich method,  so that  in ease of uniform mot ion  

we obta in  the l oga r i t hmic  ve toc i ty  prof i le ,  which corresponds 

bet ter  to the  hyd~ometzic da ta  than others which h a v e  been proposed. 

Then it  is not d i f f icul t  to obta in  

We note that  with uniform mot ion A = - 1 .  Taking ru/p = u, 2 �9 

�9 sign w and (3 .4)  into comidera t ion ,  we obtain from O.  2) 

" f i u.sig~a~ " u  [ l n a l + ( l + A l T l l + C ( t ' x ) '  w =  u d q .  (3.3) 
o 

Here C(t, x) is an arbitraxy funct ion,  The function C(t, x) is 

de texmined from the condi t ion  that  u = ~ "  when 0 = k / h ,  where 
k is the ave rage  height  of the roughness effect ,  and ~ is the universal  

constant  [4] .  In tegra t ing  (3.5) with respect  to 0 from 0 to 1 and 
assuming that  k / h  << 1/2,  we obtain 

to 1 h .4 t ~ 
u.s ignw a-  [ In  " f  + T + ct~ - -  2-]" 

From this, de texmining  X >- 0 from the re la t ion  % ] p = k [w ]w, 
we obta in  

l/-~. - t + ( t  + I d a )  '1" 
2 " - ' h  

2 gh [ .  Oh '~ h 1 
x - - ~ i  l ~ - [ w ~ s m ~ - - e o s ~  } '  / , = l n - ~ + a ~ - - -  Z "  

If we take  the l inear  re la t ion  (3.3), which is va l id ,  genera l ly  

speaking,  for smal l  y, as the function f(y) ,  we shal l  also take 

account  of m o l e c u l a r  viscosi ty,  tha t  is, we represent  the stress 

in the form [4] 

x I p = ('~ + e)Ou I 8g, (3.6) 

In this  case,  t ak ing  ~u.h / v >~  A, k / h ~ 1, we obtain the 

expression for ] / ~  in the fol lowing form: 

l /-  ~ = t + [t + % h  (Is - -  x/~)]'/, 
2 ~  - I  (Is - -  '/ ,)  

=v -x ] ~ l w l  h 
l s = l n t q _ =  v t f ~ [ w [ k  + ~ [3 - - I  

REFERENCES 

1. K. K. Fedyavski i  and A. S. Ginevski i ,  "The  nonsta t ionary 

turbulent  boundary layer  on a wing prof i te  and a body of revolut ion~" 
z h .  tekhn,  f i z . ,  vol .  29, no. 7, 1959. 

2. J. J. Stoker, Water Waves [Russian t rans la t ion] ,  Izd. inostr.  

i, 7, 1959. 
3. H, Scb/ ieht ing,  Boundary Layer Theory [Russian t rans la t ion] ,  

Izd.  Inostr, l i t . ,  1956. 
4. A. D. Al ' t shul ,  Hydraul ic  Losses due to Fr ic t ion in  Pipel ines  

[in Russian],  Gosenergoizdat ,  1963. 

5. J. O. Hinze ,  Turbulence  [Russian t rans la t ion] ,  F i z m a t g i z ,  

1963. 

f (y) = y (i  - -  TI). (3.4) 8 July 1966 Novosibirsk 


